MPEG-1 & MPEG-2 Compression

6th of March, 2002, Mauri Kangas

Contents:

- MPEG Background
- MPEG-1 Standard (shortly)
- MPEG-2 Standard (shortly)
- MPEG-1 and MPEG-2 Differencies
- MPEG Encoding and Decoding
 - Colour sub-sampling
 - Motion Compensation
 - Slices, macroblocks, blocks, etc.
 - DCT
 - MPEG-2 bit stream syntax
- MPEG-2
 - Supported Features
 - Levels
 - Profiles
- DVB Systems

MPEG Background

- MPEG = **M**otion **P**icture **E**xpert **G**roup
- ISO/IEC JTC1/SC29
 - WG11 Motion Picture Experts Group (MPEG)
 - WG10 Joint Photographic Experts Group (JPEG)
 - WG7 Computer Graphics Experts Group (CGEG)
 - WG9 Joint Bi-level Image coding experts Group (JBIG)
 - WG12 Multimedia and Hypermedia information coding Experts Group (MHEG)
- MPEG-1,2 Standardization 1988-
 - Requirement
 - System
 - Video
 - Audio
 - Implementation
 - Testing
- Latest MPEG Standardization: MPEG-4, MPEG-7, MPEG-21

MPEG-1 Standard ISO/IEC 11172-2 (1991)

"Coding of moving pictures and associated audio for digital storage media"

<u>Video</u>

- optimized for bitrates around 1.5 Mbit/s
- originally optimized for SIF picture format, but not limited to it:
 - 352x240 pixels a 30 frames/sec [NTSC based]
 - 352x288 pixels at 25 frames/sec [PAL based]
- progressive frames only no direct provision for interlaced video applications, such as broadcast television

<u>Audio</u>

• joint stereo audio coding at 192 kbit/s (layer 2)

<u>System</u>

- mainly designed for error-free digital storage media
- multiplexing of audio, video and data

Applications

• CD-I, digital multimedia, and video database (e.g. video-on-demand)

MPEG-2 Standard ISO/IEC 13818-2 (1994)

<u>Video</u>

- · 2-15 or 16-80 Mbit/s bit rate (target bit rate: 4...9 Mbit/sec)
- TV and HDTV picture formats
- · Supports interlaced material
- MPEG-2 consists of *profiles* and *levels*
 - Main Profile, Main Level (MP@ML) refers to 720x480 resolution video at 30 frames/sec, at bit rates up to 15 Mbit/sec for NTSC video (typical ~4 Mbit/sec)
 - Main Profile, High Level (MP@HL) refers to HDTV resolution of 1920x1152 pixels at 30 frames/sec, at a bit rate up to 80 Mbit/sec (typical ~15 Mbit/sec)

Audio:

· compatible multichannel extension of MPEG-1 audio

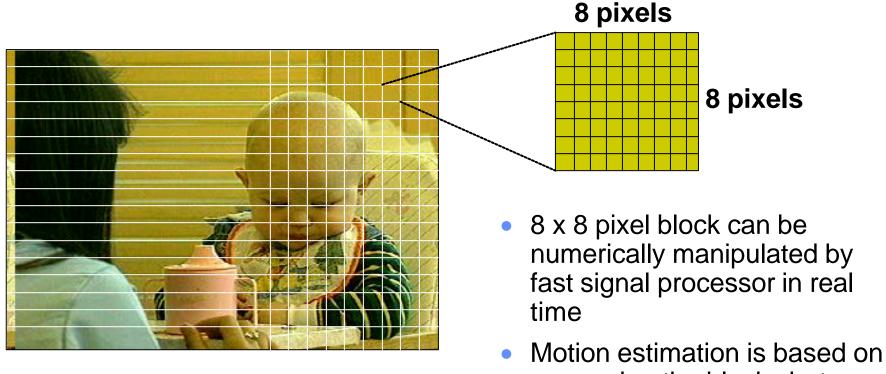
System:

- video, audio and data multiplexing defines tow presentations:
 - **Program Stream** for applications using near error free media
 - Transport Stream for more error prone channels

Applications:

• satellite, cable, and terrestrial broadcasting, digital networks, and digital VCR

MPEG-2 and MPEG-1 Differencies


- All MPEG-2 decoders that comply with currently defined profiles and levels are required to decode MPEG-1 constrained bit streams:
- List of differencies
 - IDCT Mismatch Control
 - Macroblock stuffing
 - Run-level escape syntax
 - Chrominance samples horizontal position (co-locate with luminance in MPEG-2, half the way between luminance samples in MPEG-1
 - Slices (in MPEG-2 slices start on the same horizontal row of macroblocks, in MPEG-1 its possible to have all macroblocks of a picture in one slice, for example
 - D-pictures (not permitted in MPEG-2; in MPEG-1 only Intra-DC-coefficient, special end_of_macroblock code)
 - Full-pel Motion Vectors (in MPEG-1 full-pel motion vectors possible, in MPEG-2 always half-pel motion vectors)
 - Aspect Ratio Information (MPEG-1 specifies pel aspect ratio, MPEG-2 specifies display aspect ratio and pel aspect ratio can be calculated from this and from frame size and display size)
 - Forward_f_code and backward_f_code (differencies in parameter location and contents)
 - Constrained_parameter_flag and maximum horizontal_size (MPEG-2 has profile and level mechanism)
 - Bit_rate and vbv_delay (fixed values are reserved for variable bit rate in MPEG-1, other values are for constant bit rate; in MPEG-2 semantics for bit_rate are changed, etc.)
 - VBV (in MPEG-1 VBV is only defined for constant bit rate operation; in MPEG-2 VBV is only defined for variable bit rate and constant bit rate is assumed to be a special case of variable bit rate)
 - temporal_reference (a small difference between MPEG-1 and MPEG-2)
- MPEG-2 syntax can be made to be very close to MPEG-1, by using particular values for the various MPEG-2 syntax elements that do not exist in MPEG-1 syntax

MPEG-2 vs. MPEG-1 Decoding Process

MPEG-1 decoding process is 'almost the same' as the MPEG-2 decoding process when:

- progressive_sequence = '1'
- chroma_format = '01' (4:2:0)
- frame_rate_extension_n = 0 and frame_rate_extension_d = 0 (MPEG-1 frame rate)
- intra_dc_precision = '00' (8-bit Intra-DC precision)
- picture_structure = '11' (frame-picture, because progressive_sequence = '1')
- frame_pred_frame_dct = 1 (only frame-based prediction and frame DCT)
- concealment_motion_vectors = '0' (no concealment motion vectors)
- q_scale_type = '0' (linear quantiser_scale)
- intra_vlc_format = '0' (MPEG-1 VLC table for Intra MBs)
- alternate_scan = '0' (MPEG-1 zigzag scanning order)
- repeat_first_field = '0' (because progressive_sequence = '1')
- chroma_420_type = '1' (chrominance is "frame-based", because progressive_sequence = '1'
- progressive_frame = '1' (progressive_sequence = '1')

MPEG Compression is Based on Processing 8 x 8 Pixel Blocks

comparing the blocks between series of pictures

Only Moving Areas Have to Be Coded

new picture

previous

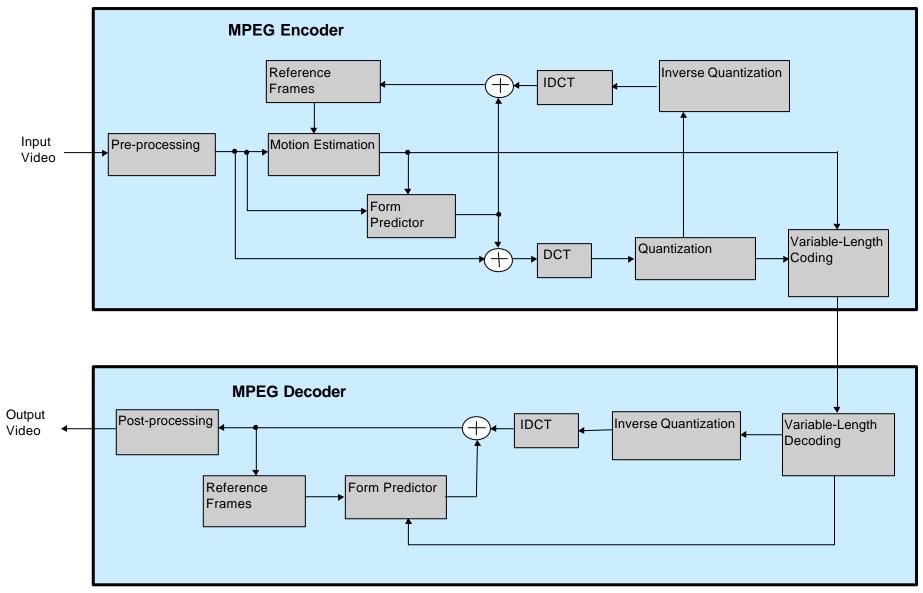
difference

Encoder

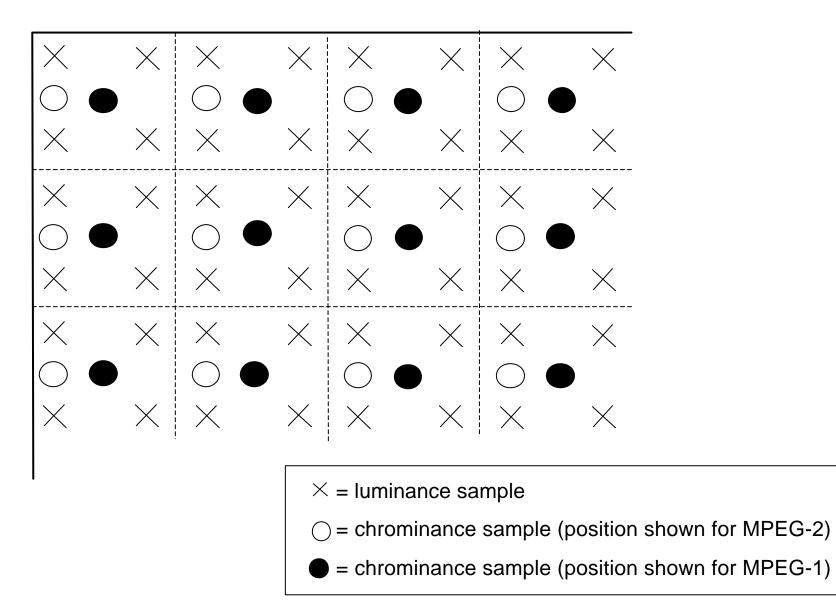
Decoder

difference

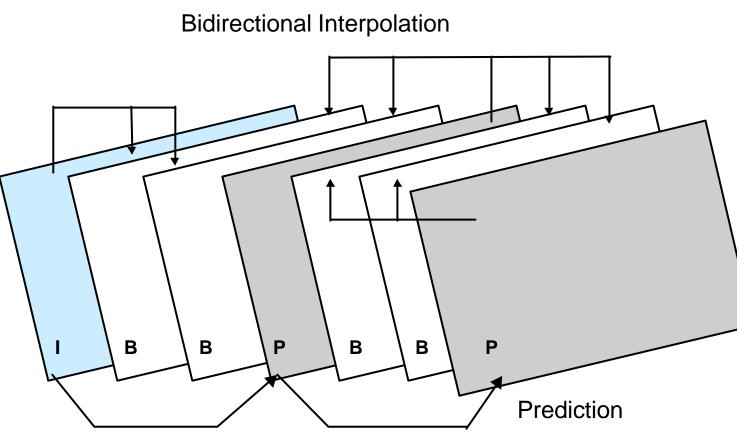
previous picture


new picture

=


8 © Mauri Kangas 2002 MPEG-1,2.PPT/ 24.02.2002 / Mauri Kangas

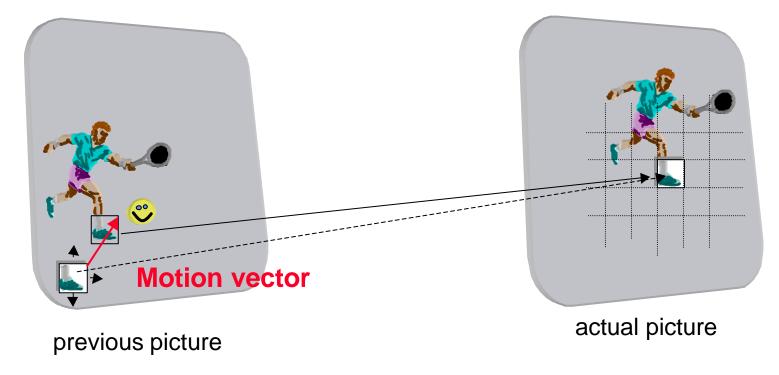
MPEG Encoding and Decoding



9 © Mauri Kangas 2002 MPEG-1,2.PPT/ 24.02.2002 / Mauri Kangas

MPEG Colour Sub-sampling 4:2:0

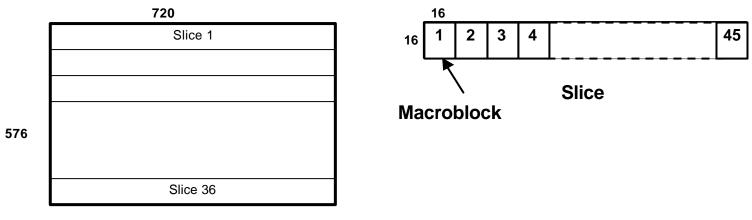
Motion Compensation


I = Intra-Frame

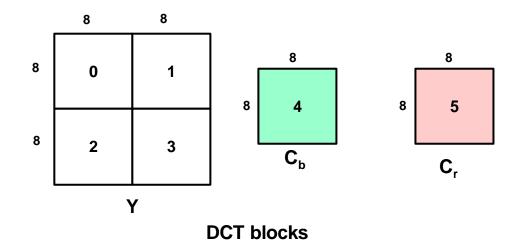
- B = Bi-directionally interpolated frame
- P = Predicted frame

- From a video signal (stream of pictures) it is not necessary to send every picture
- Whole picture is needed only when all the content is changed!
- Several pictures has to be buffered to memory to make prediction forward and bacward

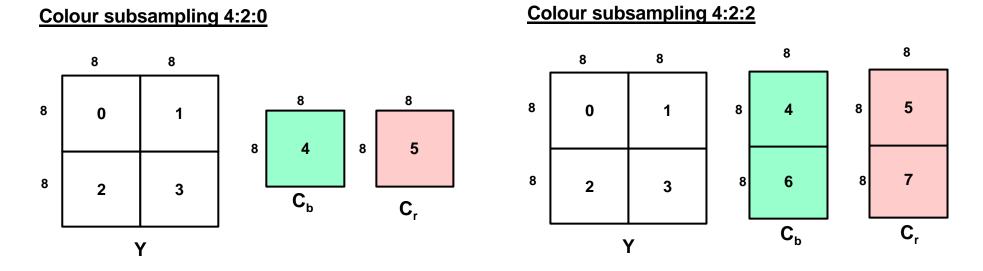
Motion Compensation


- Try to match each block in the actual picture to content in the previous picture. Matching is made by shifting each of the 8 x 8 blocks of the two successive pictures pixel by pixel each direction -> Motion vector
- Substract the two blocks -> Difference block
- Transmit the motion vector and the difference block

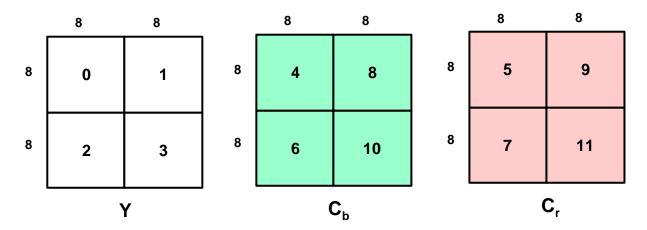
Transmission Order of the Frames

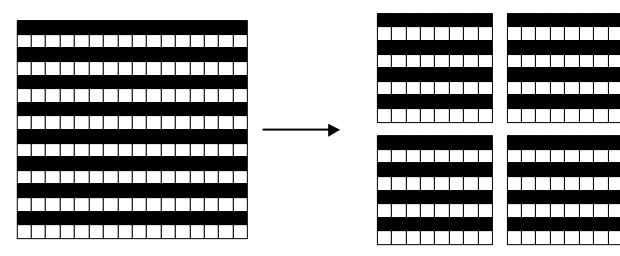

At the encoder input:												
1	2	3	4	5	6	7	8	9	10	11	12	13
	В	В	Ρ	В	В	Ρ	В	В	Ι	В	В	Р
At the encoder output, in the coded bit stream and at the decoder input:												
1	4	2	3	7	5	6	10	8	9	13	11	12
	Р	В	В	Ρ	В	В	I	В	В	Р	В	В
At the decoder output:												
1	2	3	4	5	6	7	8	9	10	11	12	13
	В	В	Р	В	В	Р	В	В	I	В	В	Р

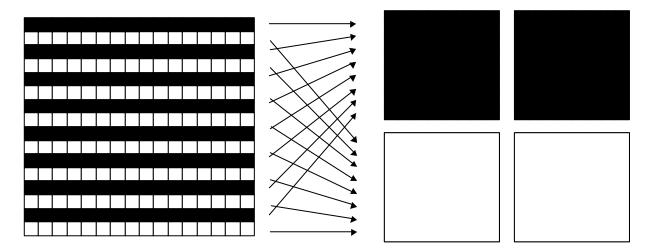
Slice and Macroblock Structure



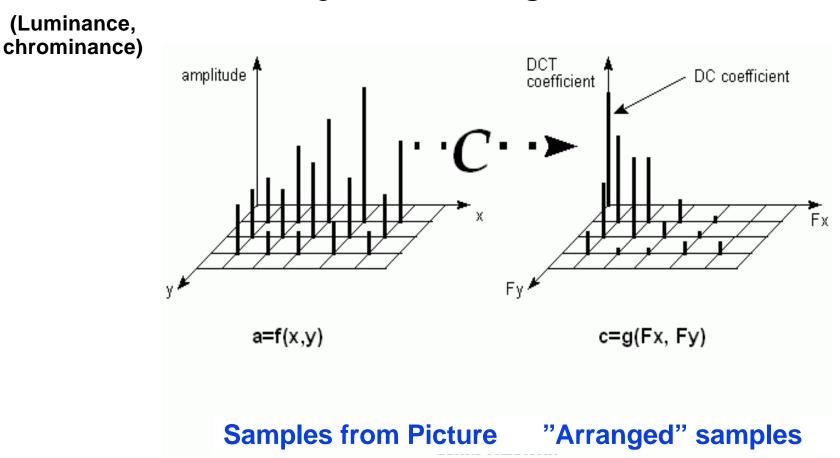
Frame


Colour subsampling 4:2:0


Colour Subsampling

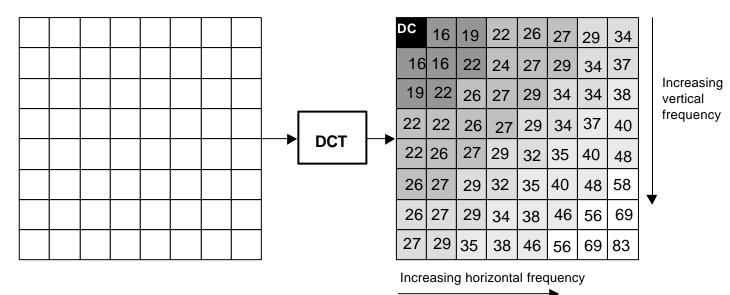

Colour 'subsampling' 4:4:4

Field vs. Frame DCT



Mapping from 16 x 16 block to 8 x 8 blocks for frame-organized data

Mapping from 16 x 16 block to 8 x 8 blocks for field-organized data


Discrete (Digital) Cosine Transform is A Way to Arrange Information

DCT - Discrete Cosine Transform

Input pixel block 8x8, 8-9 bits/sample

Coefficient block 8x8, ≥ 12 bits/sample; default quantization matrix coefficients

<u>8 x 8 DCT:</u>

$$F(u,v) = \frac{C(u)C(v)}{4} \left[\sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) \cos\left(\frac{(2x+1)u\mathbf{p}}{16}\right) \cos\left(\frac{(2y+1)v\mathbf{p}}{16}\right) \right], \quad u,v = 0,...,7$$

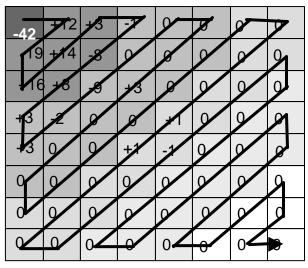
8 x 8 IDCT:

$$f(x,y) = \frac{1}{4} \left[\sum_{u=0}^{7} \sum_{v=0}^{7} C(u)C(v)F(u,v) \cos\left(\frac{(2x+1)u\boldsymbol{p}}{16}\right) \cos\left(\frac{(2y+1)v\boldsymbol{p}}{16}\right) \right], \qquad x, y = 0,...,7$$

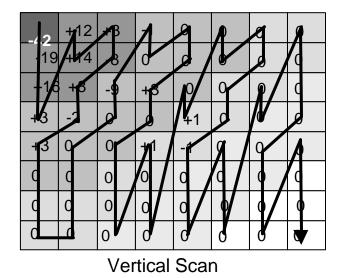
Quantization

- After quantization DCT coefficients are 12 bits or more, while the sarting data was 8 (-9) bits/pixel
- Quantizer step size in the decoder:

```
SS = QF[m, n] \times QS
```

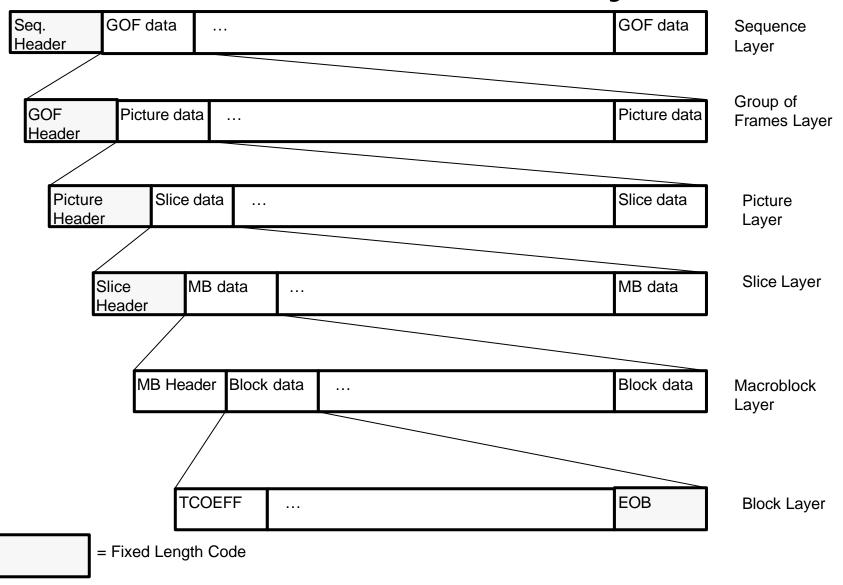

where

- * QF[m, n] is dependent from the location of the coefficient within the DCT block; in the default case QF[m,n] is within the range (16...83) for the intra frames and 16 for other frames
- * QS is the base quantizer step size
- standard gives one default quantisation matrix (same for luminance and chrominance) for intra frames and one quantisation matrix (same for luminance and chrominance)
 - with colour sub-sampling 4:2:0 only two matrices are used (one for luminance and one for chrominance)
 - with colour sub-sampling 4:2:2 and 4:4:4 four matrices are used (intra and non-intra matrix for luminance and (intra and non-intra matrix for chrominance)
 - when donloading these matrices the same matrix can be speified for both luminance and chrominance


Scanning the Quantized DCT Coefficients

-42	+12	+3	-1	0	0	0	0	 Increasing
-19	+14	-8	0	0	0	0	0	vertical frequency
+16	+8	-9	+3	0	0	0	0	
+3	-2	0	0	+1	0	0	0	
+3	0	0	+1	-1	0	0	0	₩
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

Increasing horizontal frequency


Zigzag Scan

Variable-Length Coding

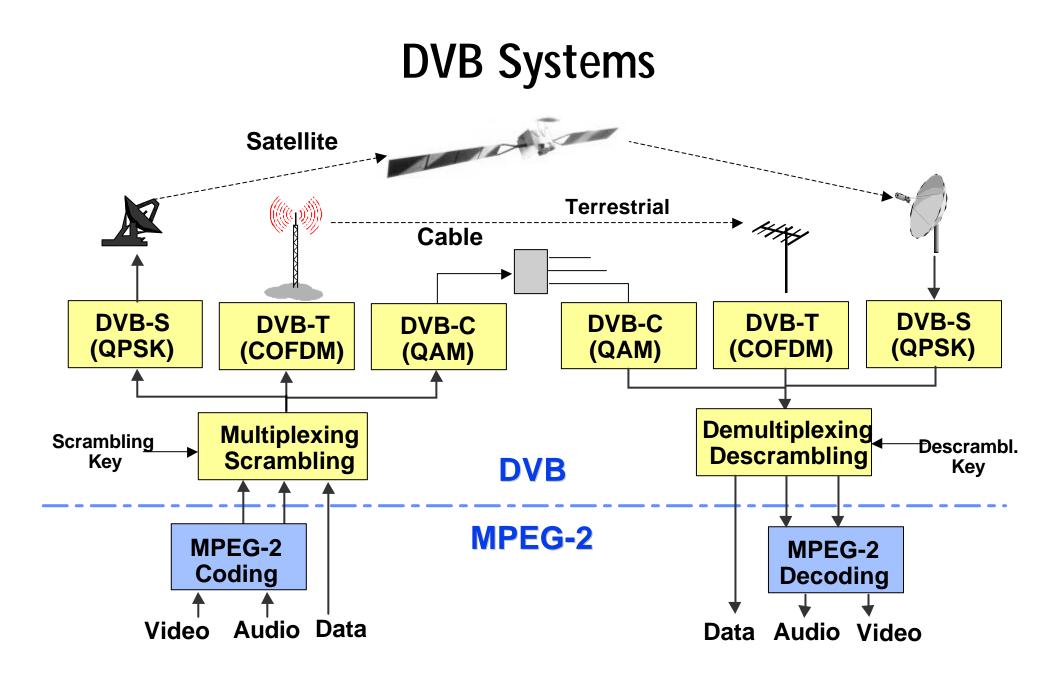
- Variable length coding is used for (example):
 - quantized coefficients
 - macroblock prediction type
 - motion vectors
 - etc.
- A Modified Huffman code is used throughout MPEG
 - optimal variable-length coding for the chosen alphabet
 - an "ESCAPE" code is added to the code; when some input symbol is recognized, which doesn't belong to a high-probability symbol set, the input symbol is inserted as such preceded by the "ESCAPE" code
- The quantized DCT coefficients are taken into a 64-symbol vector by reading the 8 x 8 DCT block in zigzag or vertical scan order
- Then run-length amplitude coding is used
 - first the DC quantized coefficient receives its own Huffman code
 - because there is a edundancy between adjacent DC quantized coefficients in non-predicted blocks, only the difference between these is Huffman coded
 - the remaining quantized coefficients are parsed into a sequence of runs, where a run is defined as zero or more zeroes followed by a single nonzero value.

MPEG-2 Bitstream Syntax

Features Supported by the MPEG-2 Algorithm

- Different chrominance sampling formats (i.e., 4:2:0, 4:2:2, and 4:4:4) can be represented
- Video in both the progressive and interlaced scan formats can be encoded
- The decoder can use 3:2 pull down to represent a ~24 fps film as ~30 fps video
- The displayed video can be selected by a movable pan-scan window within a larger raster
- A wide range fo picture qualities can be used
- Both constant an variable bit rate channels are supported
- ISO/IEC 11172-2 bit streams are decodable
- Bit streams for high and low (hardware) complexity decoders can be generated
- Editing of encoded video is supported
- The encoded bit stream is resilient to errors

MPEG-2 Profiles


The profiles are specific subset of the bit stream syntax in the MPEG-2 standard (profile-P@level-L):

- Main Profile was designed to accommodate most initial applications of MPEG-2, in terms of both functionality requirements and cost constraints
- High Profile has more functionalities thn Main Profile; allows SNR, spatial and an additional type of scalability giving high quality picture quality when all features are utilized in the decoder
- **Simple profile** is intended for low cost applications; no B-pictures (8 Mbits of memory required)
- **Spatial Scalable Profile** can provide two layer coding with different resolutions on layers (low resolution reproduction and combination gives full-resolution reproduction)
- **SNR Scalable Profile** provides layers with the same pixel resolution by different picture quality (quantization level); the first stream gives a reasonable picture quality and the other stream gives a refinement to the fisrt stream reproduction

MPEG-2 Levels

A level is a defined set of constraints imposed on the parameters of the MPEG-2 bit stream (profile-P@level-L):

- Main Level is to be used by initial applications of MPEG-2. Upper bounds of the sampling density correspond to CCIR601 picture format: 720 x 576 (PAL, 25 Hz) or 720 x 480 (NTSC, 30 Hz)
- **High Levels** are intended for HDTV systems. The High Level supports 1920 pixels per line (1920 x 1152), and the High-1440 Level 1440 pixels per line respectively (1440 x 1152)
- Low Level corresponds to the quarter-CCIR601 picture format (SIF)

Compression Efficiency

• Uncompressed studio quality TV Transmission (Standard definition):

576 lines, 720 samples/line

8 bits/sample

50 pictures/second (non interlaced)

=> 165 888 000 bits/second (black and white) or

=> 331 776 000 color (color with 50% of luminance resolution)

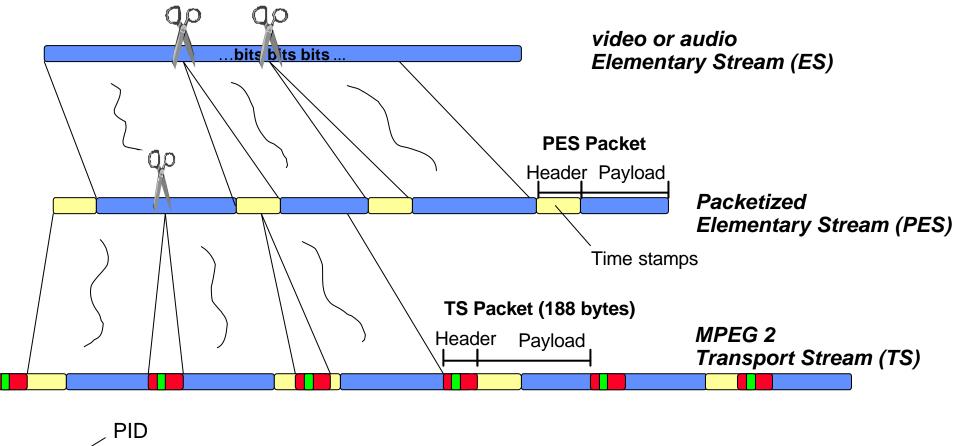
MPEG-1 coding 1,15 Mbit/second (quality: VHS)

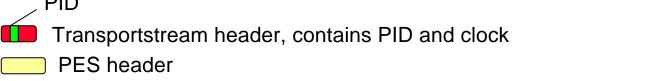
(25 pict/s, 288 x 360 pixels, non-interlaced)

• MPEG-2 coding

News: 2..3 Mbit/s

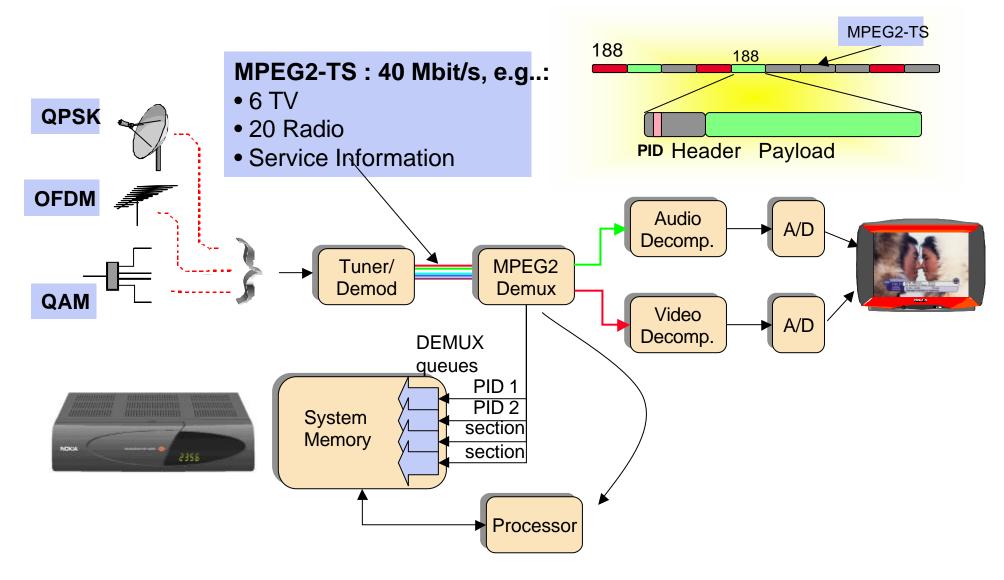
Movies: 2...4 Mbit/s, (24 pict/s)


Sports: 4...8 Mbit/s


HDTV: 15...20 Mbit/s

MPEG-4 coding

VHS quality video: 500...700 kbit/s Movies: 1...2 Mbit/s


The MPEG Transport Stream

Rule: Every elementary stream gets its own (Packet ID) PID

Processing of The Streams in The STB

